
Chapter 6

LONGITUDINAL MICROWAVE

INSTABILITY FOR PROTONS

6.1 Keil-Schnell Criterion

According to Eq. (2.10), a beam particle changes its energy per turn according to

d�E

dn
= eVrf [sin(�s � h!0�)� sin�s]� [U(Æ)� Us] + C0(hF k

0 i � hF k
0si) ; (6.1)

where the �rst two terms on the right represent, respectively, the rf focusing and radiation

damping. The last term comes from the longitudinal wake potential [Eq. (2.7)]:
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where �(�) is the linear particle density of the beam for a particle that arrives � earlier

than the synchronous particle. For a purely inductive wake potential W 0
0(�) = LÆ0(�)

(� � 0) with L being the inductance, the energy gained per turn becomes

d�E

dn
= e2L�0(�) + � � � ; (6.3)

where we have only displayed the contribution of the wake potential and assumed �0(0) =
0.. Now consider a coasting beam with a very small momentum spread. If a small bump

is developed along the beam and the vacuum chamber is inductive (L > 0), particles
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6-2 6. LONGITUDINAL MICROWAVE INSTABILITY FOR PROTONS

at the front of the bump lose energy because �0(�) < 0, and particles at the rear of the

bump gain energy because �0(�) < 0. Above transition (� > 0), particles at the front

arrive earlier and particles at the rear arrive later. Thus the bump will be smoothed

out, as illustrated in the left drawing in Fig. 6.1. The result will be the same if the beam

sees a capacitive wake (L < 0) and is below transition. However, for capacitive wake

above transition, particles at the front of the bump gain energy and will arrive later

while those at the rear of the bump lose energy and will arrive earlier, thus enhancing

the bump. The situation is the same for an inductive wake below transition. In other

word, the situation is unstable against small nonuniformity in the linear distribution.

unstable stable

capacitiveinductive

Below transition

Figure 6.1: Below transition, a bump will be smoothed out under a capacitive force

(right) and the beam will be stable against bump formation. However under an

inductive force, the bump will continue to grow (left) and the beam will be unstable

against small perturbations. Above transition, the opposite is true.

So far the momentum spread of particles in the beam has not been considered. In

order for the bump to grow, the growth rate must be faster than phase-drifting rate

coming from the momentum spread of the beam particles, otherwise the bump will be

smeared. This damping process is called Landau damping [1]. The impedance driving

the instability need not be purely reactive. It can be the real part of the impedance.

Especially for a sharp bump, the driving frequency will be very high.

This same consideration can also be applied to a bunch provided that the growth

must be faster than synchrotron frequency otherwise the bump will be smeared out.

Needless to say, the size of the bump is much less than the length of the bunch. The

driving impedance must therefore have a wavelength less than the length of the bunch.
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This growth at high frequencies is called microwave instability. This discussion is very

similar to that in Sec. 3.2. There, the concern is about the enhancement or partial

cancellation of the rf focusing force at rf frequency; therefore an inductive force below

transition or a capacitive force above transition is preferred to prevent bunch lengthening.

Here, the concern is the evolution of a small bump at high frequencies. In order that

a small bump will not grow, the opposite conclusion is obtained. In other words, to

smooth out a bump. a capacitive force below transition or an inductive force above

transition is preferred.

Because of the random quantum excitation in an electron bunch, there is a �nite

probability of having electrons jumping outside the bucket and getting lost. To increase

the quantum lifetime of an electron bunch, a large rf bucket is necessary. Touschek

scattering will also convert transverse momentum spread of electrons into longitudinal.

In order that those electrons will not be lost, the rf bucket has to be large. For this

reason, the bucket in an electron machine is in general very much larger than the size of

the electron bunch, usually the height of the bucket is more than 10 times the rms energy

spread of the bunch, in contrast with only about 3 times or less in proton machines.

To achieve this, the rf voltage Vrf for an electron ring will be relatively much larger

than that in a proton ring of the same energy. Another reason of a high Vrf in an

electron machine is to compensate for the energy loss due to synchrotron radiation. For

example, in the high-energy ring of PEP II storing 9 GeV electrons, Vrf = 18:5 MV

is required. On the other hand, Vrf for the Fermilab Tevatron storing 1 TeV protons

is only 2.16 MV. As a result, the synchrotron tunes for electron rings, �s � 0:01, are

usually an order of magnitude larger than those for proton rings, �s � 0:001. For

this reason, in the consideration of collective instabilities, the synchrotron period of the

protons is sometimes much longer than the instability growth times. The wavelength

of the perturbation or instability driving force is often of the same size as the radius or

diameter of the vacuum chamber, which is usually much shorter than the length of a

proton bunch. As a result, the proton bunches can be viewed locally as coasting beams

in many instability considerations. Thus, each individual revolution harmonic can be

considered as an independent mode. On the other hand, the electron bunch is mostly

short, of the same size or even shorter than the diameter of the vacuum chamber. In

other words, the electron bunch length can be of the same order or even shorter than the

wavelength of the instability driving force. Therefore, for electron bunches, their bunch

structure must be considered when studying their instabilities. Individual revolution

harmonics are no longer independent and we need to study bunch modes instead.
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6.1.1 Dispersion Relation

Let us �rst study the dispersion relation governing microwave instability of a proton

beam [2]. Consider a coasting beam, with mean energy E0 and mean velocity v0. The

unperturbed phase-space distribution is�

 0(�E) =
N

C0

f0(�E) ; (6.4)

where  0(�E) is normalized to the number of particle N in the beam when integrated

over the energy o�set �E and distance s along the closed orbit of the on-momentum

orbit. The energy spread distribution f0(�E) is normalized to unity when integrated

over �E. Since the linear distribution of a coasting beam is uniform,  0 does not

depend on the location s or the time t. The length of the beam is therefore equal

to the circumference C0 of the accelerator ring. Note that here we are using t as the

independent variable, because we are using a snap-shot description. The variables s and

�E are used to describe the beam in the longitudinal phase space.

This stationary distribution is perturbed by an in�nitesimal longitudinal density

wave  1 which is position dependent and evolves in time. At time t, we postulate the

ansatz

 1(s;�E; t) =  ̂1(�E)e
ins=R�i
t ; (6.5)

where R = C0=(2�) is mean radius of the closed orbit of an on-momentum particle, and


=(2�) the collective frequency of oscillation to be determined. Here, n denotes the

revolution harmonic and n = 0 must be excluded, otherwise charge conservation will be

violated. Actually, this is a snap-shot description; therefore the linear density will be

periodic in s. By ansatz, we mean a postulation of the solution which must be veri�ed

to be consistent later. In fact, Eq. (6.5) can be considered as just one term of a Fourier

series expansion. In other words, our postulation is the independence of each revolution

harmonic or the revolution harmonics are good eigennumbers. When integrated over

�E, we get the perturbation line density at time t,

�1(s; t) = �̂1e
ins=R�i
t : (6.6)

A test particle at the �xed location s monitors the perturbation wave passing through

and experiences a wake force due to all beam particles that pass the location at an earlier

�The distribution in Eq. (6.4) can also be normalized to N by integration over �E and s=v0 after

the replacement of C0 in the denominator by T0 = C0=v0. In that case, dz should be replaced by dz=v0
in Eq. (6.7), and v0 should be deleted in Eqs. (6.8), (6.10), (6.11), and also the right side of Eqs. (6.8.
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time. This force, averaged over the ring circumference, can be expressed as

hF k
0 (s; t)i = �e

2

C

Z 1

0

dz �1(s; t�z=v0)W 0
0(z) = �e

2v0
C0

�1(s; t)Z
k
0(
) ; (6.7)

where Z
k
0(
) is the longitudinal impedance of the vacuum chamber evaluated at the

collective frequency. There is a similar force acting on the particle from the wake of the

unperturbed beam distribution by replacing �1 with the unperturbed �0 in Eq. (6.7).

But that force has no time dependency and is of no interest to us here. In fact, this force

will give a modi�ed steady-state Hamiltonian and will contribute to the a modi�cation

of the unperturbed particle distribution, which we call potential-well distortion. Notice

that the impedance samples the coherent frequency of the perturbation and has no

knowledge of the revolution harmonic dependency. This is because the impedance is

located at a �xed point along the ring. However, as we shall see below, the coherent

frequency 
 does contain a harmonic content.

The particle energy will be perturbed according to the equation of motion Eq. (6.1)

d�E

dt
= �e

2v0
T0

Z
k
0(
)�̂1e

ins=R�i
t ; (6.8)

where T0 = C0=v0 is the revolution period of the on-momentum particles.

Now let us pull out the Vlasov equation in its �rst order,

@ 1
@t

+
@ 1
@s

ds

dt
+

@ 0
@�E

d�E

dt
= 0 : (6.9)

Substitution leads to

�i(
� n!) 1 =
e2v0Z

k
0 (
)

T0

d 0
d�E

�̂1e
ins=R�i
t ; (6.10)

where ! = v=R and v are, respectively, the angular revolution frequency and velocity of

a beam particle with energy o�set �E. Next we have

 1(s;�E; t) =
ie2v0Z

k
0(
)

T0

d 0
d�E

�̂1e
ins=R�i
t


� n!
: (6.11)

Integrate both sides over �E. From Eq. (6.6), the left side is just the perturbation linear

density which cancels �̂1 and the exponential on the right side, leaving behind

1 =
ie2NZ

k
0

T 2
0

Z
f 00(�E)

� n!

d�E ; (6.12)
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where the unperturbed distribution f0 in Eq. (6.4) that is normalized to unity has been

used, and the prime is derivative with respect to �E. An integration by part leads to

the dispersion relation

1 =
ieI0�nZ

k
0 (
)!

2
0

2��2E0

Z
f0(�E)

(
� n!)2
d�E ; (6.13)

where use has been made to the relation

d!

d�E
= � �!0

�2E0

; (6.14)

and I0 = eN=T0 is the mean current of the beam. The negative sign on the right side of

Eq. (6.14) comes about because the revolution frequency decreases as energy increases

above transition. An immediate conclusion of Eq. (6.13) is that our ansatz for  1 in

Eq. (6.5) is correct and all revolution harmonics are decoupledy. Equation (6.13) is

called a dispersion relation because it provides the relation of the collective frequency 


to the wave number n=R. This collective frequency is to be solved from the dispersion

relation for each revolution harmonic. If 
 has an imaginary part that is positive, the

solution reveals a growth and there is a collective instability.

If there is no energy spread, the collective frequency can be solved easily. The

collective frequency of oscillation is


 = n!0 + !0

s
eI0�n2

2��2E0

s
iRe Zk

0 (
)

n
� ImZ

k
0(
)

n

������

�n!0

; (6.15)

of which the positive imaginary part is the growth rate. Writing it this way, the �rst

square root is real above transition (� > 0), and there is no growth only when Z
k
0 is

purely inductive,

ImZ
k
0(n!0)

n
< 0 ; (6.16)

as postulated at the beginning of this chapter. By the same token, the beam is stable

below transition if the impedance is purely capacitive. For a low-energy machine, the

space charge impedance per harmonic is frequency independent and rolls o� only at very

high frequencies. Therefore above transition, the growth rate is directly proportional to

yThis is true when only the linear terms are included in the Vlasov equation. For the inclusion of

the lowest nonlinear terms, see Refs. [10, 11].
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n or frequency. This is the source of negative-mass instability for a proton machine just

above transition. The terminology comes about because the space charge force appears

to be attractive above transition in binding particles together to form clumps as if the

mass of the particles is negative. From Eq. (6.15), we can de�ne

!G = !0

s
��ieI0nZ

k
0

2pi�2E0

(6.17)

as the growth rate without damping due to energy spread. Close examination reveals

some similarity of this de�nition with the expression of synchrotron angular frequency

!s. We can therefore interpret !G as the synchrotron angular frequency inside a bucket

created by the interaction of the beam current I0 with the longitudinal coupling impe-

dance Z
k
0 at the revolution harmonic n. The factor �i takes care of the fact that the

voltage created has to be 90Æ out of phase with the current so that a bucket can be

formed.

Now let us consider a realistic beam that has an energy spread. Since ! is a

function of the energy o�set �E, de�ne a revolution frequency distribution g0(!) for

the unperturbed beam such that

g0(!)d! = f0(�E)d�E : (6.18)

Substituting into Eq. (6.13) and integrating by part, we obtain

1 = � ieI0�Z
k
0 (
)!

2
0

2��2E0

Z
g00(!)

� n!

d! : (6.19)

Given the frequency distribution g0(!) of the unperturbed beam and the impedance Z
k
0

of the ring at roughly n!0, the collective frequency 
 can be solved from the dispersion

equation. For a given revolution harmonic n, there can be many solutions for 
. How-

ever, we are only interested in those that have positive imaginary parts. This is because

if there is one such unstable solution, the system will be unstable independent of how

many stable solutions there are. However, there is a subtlety in dealing with solution

on the edge of stability, that is, when 
 is real. The dispersion relation will blow up

when n! = 
 during the integration. This subtlety can be resolved if the problem is

formulated as an initial value problem, which we will discuss in Chapter 14 on Landau

damping. It will be shown that the proper way to go around the subtlety is to make the

replacement



n
�! 


n
+ i� ; (6.20)
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where � is an in�nitesimal positive real number and the harmonic n is considered positive.

In other words, the path of integration in the !-plane always goes under the 
=n pole

as illustrated in Fig. 6.2.

Im ω

ωReΩ
n + i ε

Figure 6.2: The path of integration in the dispersion relation must go below the 


pole.

6.1.2 Stability Curve

For a Gaussian distribution, the integral in the dispersion relation is related to the

complex error function, so that an analytic solution can be written down. For other

distributions, one has to resort to numerical method. For a given growth rate or Im
,

we perform the integral for various values ofRe
 and read o� Re Zk
0 and ImZ

k
0 from the

dispersion equation. Thus, we can plot a contour in theRe Zk
0 -ImZ

k
0 plane corresponding

to a certain growth rate. This plot for the Gaussian distribution below transition is

shown in Fig. 6.3. What are plotted is the real part U 0 and imaginary part V 0 of

U 0 + iV 0 =
eI0�

2(Z
k
0=n)

j�jE0(�E=E)2FWHM
(6.21)

at �xed growth rates. From outside to inside, the contours in the �gure correspond to

growth rates 0.5 to �0:5 in steps of �0:1 in units of HWHM of the frequency spread,

where negative values imply damping. The contour corresponding to the stability thresh-

old is drawn in dot-dashes and the area inside it is stable. Note that the positive V 0-axis
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Figure 6.3: The growth contours for a Gaussian distribution in revolution fre-

quency below transition. The abscissa U 0 and ordinate V 0 are, respectively, real and
imaginary parts of eI0�

2(Z
k
0=n)=[j�jE0(�E=E)

2
FWHM

]. From outside to inside, the

contours correspond to growth rates 0.5 to �0:5 in steps of �0:1 in units of HWHM

of the frequency spread, where negative values imply damping. The contour corre-

sponding to the stability threshold is drawn in dot-dashes and the area inside it is

stable.

is a cut and those damping contours continue into other Riemann sheets after passing

through the cut. Therefore, for each (U 0; V 0) outside the stability region bounded by the
dot-dashed curve, there can also be one or more stable solutions. However, since there

is at least one unstable solution, this outside region is termed unstable.

Obviously, these contours depend on the distribution g0(!) assumed. In Fig. 6.4,

we plot the stability contours for various frequency distributions below transition. They

are for frequency distributions, from inside to outside, f(x) = 3
4
(1� x2), 8

3�
(1� x2)3=2,

15
16
(1�x2)2, 315

32
(1�x2)4, and 1p

2�
e�x

2=2. The innermost one is the parabolic distribution

with discontinuous density slopes at the edges and we see that the stability contour
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curves towards the origin in the positive V 0 region. The contour next to it corresponds

Figure 6.4: The stability contours for di�erent frequency distribution below tran-

sition. The abscissa U 0 and ordinate V 0 are, respectively, real and imaginary parts

of eI0�
2(Z

k
0=n)=[j�jE0(�E=E)

2
FWHM

]. From inside to outside, they correspond to

unperturbed revolution frequency distribution f(x) = 3
4
(1 � x2), 8

3� (1 � x2)3=2,
15
16
(1� x2)2, 315

32
(1� x2)4, and 1p

2�
e�x

2=2. Note that all contours cut the V 0-axis at
about �1.

to continuous density slopes at the edges and it does not dip downward in the positive

V 0 region. As the edges become smoother or with higher derivatives that are continuous,
the contour shoots up higher in the upper half plane. For all distributions with a �nite

spread, the contours end with �nite values at the positive V 0-axis. For the Gaussian

distribution which has in�nite spread and continuous derivatives up to in�nite orders,

the contour will only approach the positive V 0-axis without intersecting it.

We note in Fig. 6.4 that, regardless the form of distribution, all contours cut the

negative V 0-axis at � �1. Therefore, it is reasonable to approximate the stability region
by a unit circle in the U 0-V 0 plane, so that a stability criterion can be written analytically.
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This is the Keil-Schnell criterion which reads [3] (Exercise 6.1)�����Zk
0

n

����� < F
j�jE0

eI0�2

�
�E

E0

�2

FWHM

; (6.22)

where F is a distribution-dependent form factor and is equal to the negative V 0-intersection
of the contour. For all the distributions discussed here, F � 1. (See Exercise 6.1 below).

For a bunch beam, if the disturbance has a wavelength much less than the bunch

length, we can view the bunch locally as a coasting beam. Boussard [4] suggested

to apply the same Keil-Schnell stability criterion to a bunch beam by replacing the

coasting beam current I0 with the peak current Ipeak of the bunch. Krinsky and Wang

[6] performed a vigorous derivation of the microwave stability limit for a bunch beam

with a Gaussian energy spread and found the stability criterion�����Zk
0

n

����� < 2�j�jE0

eIpeak�2

�
�E

E0

�2

rms

: (6.23)

Comparing with Eq. (6.22), the Krinsky-Wang criterion corresponds to the Keil-Schnell

criterion with a form factor of �=(4 ln 2) = 1:133, which is exactly the negative V 0-
intersect (see Exercise 6.1.) We want to point out that it is necessary for the Keil-

Schnell criterion of Eq. (6.22) to be de�ned in terms of the full width at half maximum

(FWHM) of the energy spread. Only such a reference will give a form factor that is

close to unity for all reasonable distributions of the energy spread. This may be because

the FWHM provides us with a more accurate measurement of the spread than the rms

value. As an example, in terms of FWHM according to Eq. (6.22), the form factors for the

Gaussian and the parabolic distributions are, respectively, and F = �=(4 ln 2) = 1:133

and F = �=3 = 1:0472. Since �EFWHM = 2
p
2 ln 2�Erms for the Gaussian distribution

and �EFWHM =
p
10�Erms for parabolic distribution, if we express the stability criterion

in terms of the rms energy spread as in Eq. (6.23), the form factors become F = 1 for

the Gaussian distribution and F = 5=3 = 1:67 for parabolic the distribution.

6.1.3 Landau Damping

Keil-Schnell Criterion can be rearrange to read

n!0

s
ej�jjZk

0=njI0
2��2E0

< n!0

r
F

2�

j�j�EjFWHM
�2E0

: (6.24)
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The left side is the growth rate without damping as discussed in Eq. (6.17) with I0
replaced by Ipeak in the case of a bunch. The right side can therefore be considered

as the Landau damping rate coming from energy spread or frequency spread. Stability

is maintained if Landau damping is large enough. The theory of Landau damping is

rather profound, for example, the exchange of energy between particles and waves, the

mechanism of damping, the contour around the poles in Eq. (6.13), etc. These will be

studied in detailed in Chapter 14. The readers are also referred to the papers by Landau

and Jackson [1, 7], and also a very well-written chapter in Chao's book [2].

6.1.4 Self-Bunching

Neglecting the e�ect of the wake function, the Hamiltonian for particle motion can be

written as

H = � �

2v�2E0

(�E)2 +
eVrf
2�vh

cos(h!0�) ; (6.25)

where the synchronous angle has been put to zero and the small-bunch approximation

has been relaxed. It is easy to see that the height of the bucket is

�Ej
bucket

=

s
eE0Vrf
�hj�j : (6.26)

Keil-Schnell criterion can now be rearranged to reads
eE0I0jZk

0 j
�nj�j <

s
F

��2
�Ej

FWHM
: (6.27)

Comparing with Eq. (6.26), the left side can be viewed as the height of a bucket created

by an induced voltage I0jZk
0 j while the right side roughly the half full energy spread

of the beam. This induced voltage will bunch the beam just as an rf voltage does. If

the self-bunched bucket height is less than the half full energy spread of the beam, the

bunching e�ect will not be visible and beam remains coasting. Otherwise, the beam

breaks up into bunchlets of harmonic n, and we call it unstable. This mechanism is

known as self-bunching.

In fact, self-bunching is not so simple. The image current of the beam is rich in

frequency components. For the component at the resonant frequency of the impedance,

the voltage induced, called beam loading voltage, is in phase with the image current
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or, more correctly, in opposite direction of the beam. Such voltage will not create any

rf-like bucket at all, and therefore cannot produce self-bunching. Remember that when

the beam is in the storage mode inside an accelerator ring, the rf voltage is at 90Æ to the
beam current and the bucket created will be of maximum size|the so-called stationary

bucket with synchronous angle �s = 0 when the operation is below transition. As the

synchronous angle �s increases, the angle between the rf voltage and the beam, or the

detuning angle  = �
2
� �s , de�ned in Eq. (6.30)below, decreases and so is the bucket

area|the so-called moving bucket. When the rf voltage is in phase with the beam, the

synchronous angle �s =
�
2
and the bucket area shrinks to zero. In order for the beam

image current to develop spontaneous self-bunching, the �elds developed must be of such

a phase and amplitude as to develop a real bucket of suÆcient area to contain the beam.

Although a small beam loading angle or a large synchronous angle will result in a small

bucket area, however, as the beam frequency moves away too far from the resonance

frequency, the beam loading voltage induced by the resonance impedance decreases also

because the resonant impedance rolls o� when the detuning is large. Consequently,

there is a frequency deviation between the beam Fourier component and the resonance

frequency at which the developed bucket area passes through a maximum. Some may

argue that it is not the bucket area but the bucket height that sets the instability

threshold, and the bucket height also goes through a maximum in between �s = 0 and
�
2
. It is this bucket height that should enter into Eq. (6.26) for the stability criterion.

The impedance of a resonance is

Z
k
0 (!) =

Rs

1� iQ
�
!
!r
� !r

!

� ; (6.28)

where Rs is the shunt impedance, Q the quality factor, and !r the angular resonant

frequency. When the frequency ! of the image current is close to the resonant frequency,

we can write

Z
k
0(!) � Rs cos e

�i ; (6.29)

with the detuning angle de�ned as

tan = 2Q
!r � !

!r
: (6.30)

Therefore, the beam loading voltage induced by the image current of frequency compo-

nent ! will be proportional to cos and at an angle  from the image current. Since

 = �
2
� �s and both the bucket area and height are proportional to the square root of
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the voltage, we have,

inducedbucket area / �(�)
p
� ;

inducedbucket height / �(�)
p
� ;

(6.31)

where � = sin�s = cos . The parameter �(�) is the ratio of the moving bucket area

to the stationary bucket area (when � = 0), and the parameter �(�) is the ratio of the

moving bucket height to the stationary bucket height [8]. The induced bucket area and

bucket height area plotted against � in Fig. 6.5. We see that the induced bucket area

Figure 6.5: Plot showing the area and height of the bucket created by image cur-

rent interacting with a resonant impedance. At a certain detuning  , describing

the frequency o�set of the image current Fourier component from the resonant fre-

quency of the impedance, the induced bucket area or bucket height passes through

a maximum. Self-bunching is most probable when the bucket area or bucket height

is maximized.

has a maximum when � = 0:25 or the detuning angle  = 76Æ, while the induced bucket

height has a maximum when � = 0:39 or the detuning angle  = 67Æ. From these

results, the most probable frequency at which self-bunching takes place can be inferred.

There are two comments. First, our discussion above is for an accelerator operat-

ing below transition. The detuning angle is positive implying that the frequency shift

is towards the inductive or low-frequency side of !r. When the accelerator is above
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transition, the detuning will be towards the capacitive or high-frequency side of !r.

This can be easily understood in a phasor-diagram description, which we will pursue in

Chapter 7.5. The synchronous angle �s that we reference in this subsection is in fact

the negative of the usual synchronous angle. This is because the beam loading voltage

is essentially in the opposite direction of the beam current. Therefore the beam load-

ing voltage will decelerate the beam instead of the usual acceleration by the rf voltage.

However, the sign of �s does not a�ect the area or height of the induced bucket.

6.1.5 Overshoot

When the current is above the microwave threshold, the self-bunching concept tells us

that there will be an increase in energy spread of the beam. The increase continues until

it is large enough to stabilize the beam again according to the Keil-Schnell criterion. For

a proton beam, experimental observation indicates that there will be an overshoot. Let

(�E)i be the initial energy spread which is below the threshold energy spread (�E)th
postulated by the Keil-Schnell criterion. The �nal energy spread (�E)f was found to

be given empirically by [9]

(�E)i(�E)f = (�E)2th : (6.32)

Thus the �nal energy spread is always larger than the threshold energy spread. Over-

shoot formulas similar to but not exactly the same as Eq. (6.32) have been derived

by Chin and Yokoya [10], and Bogacz and Ng [11]. For a bunch, the rf voltage intro-

duces synchrotron oscillations. Thus, an increase in energy spread implies also eventual

increase in bunch length. At the same time, the bunch area will be increased also.

The situation is quite di�erent for electron bunches because of their short bunch

lengths and the presence of radiation damping. This will be discussed in Chapter 7.

6.2 Observation and Cure

In order for a bunch to be microwave unstable, the growth rate has to be much faster

than the synchrotron frequency. For the FermilabMain Ring, the synchrotron period was

typically about 100 to 200 turns or 2 to 4 ms. A naive way is to observe the microwave

growth is to view the spectrum of the bunch over a large range of frequencies at a certain

moment. However, the bunch spectrum produced by a network analyzer is usually via a
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series of frequency �lters of narrow width, starting from low frequencies and working its

way towards high frequencies. This process is time consuming. As soon as the �ltering

reaches the frequencies concerned, typically a few GHz, the microwave growth may have

been stabilized already through bunch dilution, and therefore no growth signals will be

recorded. The correct way is to set the network analyzer at a narrow frequency span

and look at the beam signal as a function of time. The frequency span is next set to

an adjacent narrow frequency interval and the observation repeated until the frequency

range of a few GHz has been covered. Besides, we must make sure that the network

analyzer is capable of covering the high frequency of a few GHz for the microwave

growth signals. The cable from the beam detector to the network analyzer must also be

thick enough so that high-frequency attenuation is not a problem in signal propagation.

Such an observation was made at the CERN Intersecting Storage Ring (ISR) which is

a coasting beam machine. The network analyzer was set at zero span at 0.3 GHz. The

beam current was at 55 mA. The signal observed from injection for 0.2 s is shown at

the lower left corner of Fig. 6.6 in a linear scale. We see the signal rise sharply and

decade very fast, implying an instability which saturates very soon. The beam current

was next increased by steps to 190 mA and the observation repeated. We notice that

with a higher beam current, the instability starts sooner and stays on longer. The center

frequency of the network analyzer was next increased at the steps of 0.2 GHz and the

observation repeated. The observation reveals an instability driven by a broadband

impedance centering roughly at 1.2 GHz. Microwave instability can also be revealed in

monitoring the longitudinal beam pro�les, sometimes known as mountain ranges, via

a wall resistance monitor. An example is shown in Fig. 6.8. From the ripples, the

frequency of the driving impedance can be determined.

One way to produce microwave instability is to lower the rf voltage adiabatically.

As the momentum spread of the bunch becomes lower than the Keil-Schnell criterion,

microwave instability will develop. From the critical rf voltage, the momentum spread

of the bunch can be computed and the impedance of the vacuum chamber driving the

instability can be inferred. The rf voltage of the cavities in a proton synchrotron cannot

be very much reduced, otherwise multi-pactoring will occur. The total voltage of the

rf system can, however, be reduced by adjusting the phases between the cavities. For

example, if the phase between two cavities is 180Æ, the voltages in these two cavities

will be canceled. This is called paraphasing. For this reason, it is not possible to know

the rf voltage exactly. Small errors in the paraphasing angles will bring about a large

uncertainty in the tiny paraphased voltage. For this reason, the impedance determined
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Figure 6.6: Pick-up signal after injection in the CERN ISR, for di�erent observation

frequencies but at zero span and di�erent values of beam current. For high beam

current, the signal grows before it decays.

by this method may not be accurate.

Another way to observe microwave instability is through debunching. The rf volt-

age is turned o� abruptly and beam starts to debunch. During debunching, the local

momentum spread decreases. When the latter is small enough, microwave instability

occurs. From the time the instability starts, the impedance of the vacuum chamber can

be inferred with the help of the Keil-Schnell criterion. In performing this experiment,

the rf cavities must be shorted mechanically after the rf voltage is turned o�. Oth-

erwise, the beam will excite the cavities, a process called beam loading. The excited

�elds inside the cavities can bunch the beam developing high-frequency signals resem-

bling signals of microwave instability. Such an experiment has been performed at the

CERN Proton Synchrotron (CPS) and the observation is displayed in Fig. 6.7. The

�gure shows the time development at 2 ms per division. The top trace shows the rf
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voltage which is turned o� at 4 ms point. The network analyzer was set at a span from

1.5 to 1.8 GHz and the beam pick-up signal of the beam is shown in the lower trace.

We see high-frequency beam signal start developing about 1 ms after the rf voltage is

turned o�. The signal grows for a few ms before it subsides. The shortcoming of this

method of impedance measurement is the diÆculty in determining the exact time when

the microwave instability starts to develop. One must understand that the growth of

the signal amplitude is exponential; therefore the very initial growth may not be visible.

Figure 6.7: Microwave signal observed during debunching in the CERN CPS after

the rf voltage (top trace) is turned o�. The lower trace shows the beam signal at

1.5 to 1.8 GHz. The sweep is 2 ms per division.

Since microwave instability occurs so fast, it is not possible to use a damper system

to cure it. One way to prevent the instability is to blow up the bunch so that the energy

spread is large enough to provide the amount of Landau damping needed. Another

way is to reduce the impedance budget of the ring by smoothing out the beam pipe

discontinuities. For negative-mass instability driven by the space charge impedance just

after transition, one can try to modify the ramp curve so that transition can be crossed

faster. Of course, a t-jump mechanism will be very helpful.
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6.3 Ferrite Insertion and Instability

In Sec. 3.6, we discuss an experiment at the Los Alamos PSR where the space charge

repulsive force is large compared with the available rf bunching force. Ferrite rings

enclosed inside two pill-case cavities were installed into the vacuum chamber so that the

beam would see an amount of inductive force from the ferrite, hoping that the space

charge repelling force would be compensated. The experiment results show that this

additional inductive force did cancel an appreciable amount of the space charge force of

the intense proton beam to a certain extent. This is evident because the bunch lengths

were shortened in the presence of the ferrite inserts with zero bias of the solenoidal

current wound outside the ferrite tuners, and lengthened when the ferrite rings were

biased. Also, the rf voltage required to keep the protons bunched to the required length

had been lowered by about 1/3 in the presence of the ferrite insertion. At the same time

the gap between successive proton beams was the cleanest ever seen, indicating that the

rf buncher was able to keep the beam within the space charge distorted rf buckets so that

no proton would leak out. However, the space charge compensation of the potential-well

distortion had not been perfect. The ferrite insertion did lead to serious instability which

we are going to discuss below.

6.3.1 Microwave Instability

The PSR was upgraded in 1998. The two previous ferrite tuners together with an

additional one were installed in order to compensate for the space charge force of the

higher intensity beam. However, an instability was observed [12]. With the rf buncher

o�, Fig. 6.8 shows the mountain-range plot of two consecutive turns of a chopped coasting

beam accumulated for 125 �s and stored for 500 �s. The signals were recorded at a wide-

band wall current monitor. The ripples at the beam pro�le indicate that a longitudinal

microwave instability has occurred. The fast Fourier transform spectrum in Fig. 6.9

shows that the instability is driven at 72.7 MHz or the 26th revolution harmonic. The

instability had also been observed in bunched beam. Ripples also show up at the rear

half of a bunch, as recorded by a wall-gap monitor in Fig. 6.10. The top plots are

two successive turns of a � 250 ns (full width) bunch. Apparently, the instability is

tolerable because ripples do not distort the shape of the bunch by too much. However,

the � 100 ns bunch on the lower plots is totally disastrous. The instability lengthens

the bunch to almost 200 ns with very noticeable head-tail asymmetry.
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Figure 6.8: Beam pro�le of two consecutive turns of a chopped coasting beam

recorded in a wall-gap monitor after storage of � 500 �s. The ripples show that a

longitudinal microwave instability has occurred.

Figure 6.9: (color) Spectrum of the instability signal of the chopped beam in

Fig. 6.8, showing the driving frequency is at 72.7 MHz.
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Figure 6.10: Instability perturbation on pro�les of bunches with full width 250 ns

(top) and 100 ns (bottom). The e�ect on the 250 ns bunch may be tolerable, but

certainly not on the 100 ns bunch, which has lengthened almost to 200 ns.
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6.3.2 Cause of Instability

In order to understand the reason behind the instability, let us �rst construct a simple

model for the ferrite tuner. To incorporate loss, the relative permeability of the ferrite

can be made complexz: �s ! �0s + i�00s . The impedance of a ferrite core of outer/inner

diameter do=di and thickness t is therefore

Z
k
0 = �i(�0s + i�00s)!L0 ; (6.33)

where L0 = �0t ln(d0=di) denotes the inductance of the ferrite if the relative permeability

�s were unity. It is clear that �0s and �
00
s must be frequency-dependent. Their general

behaviors are shown in Fig. 6.11. For the Toshiba M4C21A ferrite, �0s is roughly constant
at � 50 to 70 at low frequencies and starts to roll o� around !r=(2�) � 50 MHz, while

�00s , being nearly zero at low frequencies, reaches a maximum near !r=(2�). The simplest

Figure 6.11: (color) Plot of �0 and �00 as functions of frequency in the 2-parameter

model. These are the typical properties of �0 and �00 for most ferrites.

zThe subscript 's' signi�es that the permeabilities are de�ned as if an inductor and a resistor are in

series.
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Figure 6.12: (a) Two-element model of ferrite. (b) Three-element model of ferrite

cores enclosed in a pill-box cavity.

model for a piece of ferrite consists of an ideal inductance Lp and an ideal resistor Rp

in parallel, as indicated in Fig. 6.12(a).

The impedance of the ferrite core is

Z
k
0(!) = �i!Lp 1 + i!=!r

1 + !2=!2
r

; (6.34)

with a resonance at

!r =
Rp

Lp
; (6.35)

and

�0s =
Lp
L0

1

1 + !2=!2
r

; �00s =
Lp
L0

!=!r
1 + !2=!2

r

: (6.36)

We see that the series �0s is relatively constant at low frequencies and starts to roll o�

when approaches !r, while �
00
s increases as ! at low frequencies and resonates at !r. The

corresponding longitudinal wake potential is

W (�) = Rp [ Æ(�)� !re
�!r� ] : (6.37)

When the ferrite is biased, Lp decreases so that �0s decreases. In this model, this is

accomplished by a rise in the resonant frequency !r. Actually, measurements show that
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the resonant frequency of �00s does increase when the ferrite is biased. Thus, this simple

2-parameter model gives a very reasonable description of the ferrite.

With the ferrite cores enclosed in a pill-box cavity, a 3-parameter broadband parallel-

RLC resonance model, as indicated in Fig. 6.12(b), appears to be more appropriate for

the ferrite tuner as a whole. Sometimes there may be an additional residual resistance

Rr which we neglect for the time being. We have, for the inductive insert,

Z
k
0 (!) =

Rp

1� iQ

�
!

!r
� !r

!

� ; (6.38)

where the resonant frequency is !r=(LpCp)
�1=2 and the quality factor is Q=Rp

p
Cp=Lp.

For a space charge dominated beam, the actual area of beam stability in the complex

Z
k
0=n-plane (or the traditional U

0-V 0 plane) is somewhat di�erent from the commonly

quoted Keil-Schnell estimation [3, 4]. In Fig. 6.13, the heart-shape solid curve, denoted

by 1, is the threshold curve for parabolic distribution in momentum spread, where the

momentum gradient is discontinuous at the ends of the spread. Instability develops and a

smooth momentum gradient will result at the ends of the spread, changing the threshold

curve to that of a distribution represented by 2, for example, 15
16
(1� Æ2=Æ̂2)2, where Æ is

the fractional momentum spread and Æ̂ the half momentum spread. Further smoothing

of the momentum gradient at the ends of the spread to a Gaussian distribution will

change the threshold curve to 3. On the other hand, the commonly known Keil-Schnell

threshold is denoted by the circle of unit radius in dots. This is the reason why in many

low-energy machines the Keil-Schnell limit has been signi�cantly overcome by a factor

of about 5 to 10 [5]. In this case, the space charge is almost the only source of the

impedance, the real part of the impedance can be typically orders of magnitude smaller.

As an example, if the impedance of the Los Alamos PSR is at Point A, the beam is

within the microwave stable region if the momentum spread is Gaussian like, although

it exceeds the Keil-Schnell limit. Now, if we compensate the space charge potential-well

distortion by the ferrite inductance, the ferrite required will have an inductive impedance

at low frequency equal to the negative value of the space charge impedance at A, for

example, about�5:5 units according to Fig. 6.13. However, the ferrite also has a resistive
impedance or Re Zk

0 coming from �00s . Although Re Zk
0=n is negligible at low frequencies

(for example, the rf frequency of 2.796 MHz of the PSR), it reaches a peak value near

!r=(2�) (about 50 to 80 MHz for the Toshiba M4C21A inside the pill-box container)

with the peak value the same order of magnitude as the low-frequency ImZ
k
0 . Actually,
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Figure 6.13: Microwave instability threshold curves in the complex Z
k
0 (or U 0-V 0)

plane, for (1) parabolic momentum distribution, (2) distribution with a continuous

momentum gradient, and (3) Gaussian momentum distribution. The commonly

quoted Keil-Schnell threshold criterion is denoted by the circle in dots. An intense

space charge beam may have impedance at Point A outside the Keil-Schnell circle

and is stable. A ferrite tuner compensating the space charge completely will have a

resistive impedance roughly at Point B and is therefore unstable.

according to the RLC model discussed above, we get approximately

Re Zk
0=njpk

ImZ
k
0=nj!!0

� Q2 +Q + 1

Q+ 2
=

8<:
Q if Q� 1

1 if Q � 1
1
2

if Q� 1

9=; � 1

2
: (6.39)

The RL model gives the same impedance ratio of 1
2
as the low-Q case of Eq.(6.39). Thus

the ferrite will contribute a resistive impedance denoted roughly by Point B (� 5:5 units)

when Q�1 or at least one half of it when Q�1. This resistive impedance of the ferrite

insert will certainly exceed the threshold curve and we believe that the longitudinal

instability observed at the Los Alamos PSR is a result of this consideration. It follows
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from here that such low-frequency compensation of an intense space charge induced

potential-well distortion will result in the microwave instability at high frequencies,

! ' !r. The conclusion appears to be that strong space charge potential-well distortion

can only be compensated by the ferrite inductance to some extent to ensure that the

resistive part of the ferrite insertion is kept below the microwave instability threshold.

However, Eq. (6.39) is only correct when the RLC circuit is composed of an ideal resistor,

an ideal inductor, and an ideal capacitor. In reality, the ferrite cores are much more

complicated. To represent the inductor insert, many of these elements are frequency

dependent. Thus, if one chooses the right ferrite in the construction of the inductive

insert, it is possible to have the ratio of Re Zk
0=njpk to ImZ

k
0=nj!!0 much less than 1

2
.

Such a ferrite will be the best candidate for space charge compensation.

6.3.3 Heating the Ferrite

One way to avoid the longitudinal microwave instability driven by the compensating

ferrite is to choose a ferrite having the properties of high �0s at low frequencies and low

lossx at high frequencies. Their ratio should be at least or larger than � 10. Past expe-

rience indicates that when a piece of ferrite is heated up, �0s will increase and hopefully

the loss at high frequencies will decrease, thus having exactly the same properties that

we are looking for.

A measurement of the temperature dependency of the ferrite has been made on a

ferrite insert similar to those manufactured for the PSR was used, but much shorter

containing only several ferrite cores. A sinusoidal wave was introduced from one end of

the ferrite tuner via an antenna while the transmitted wave was received with another

antenna at the other end. What was measured was S21, the forward transmission through

the network (in this case cavity), or the attenuation of a passive network. The results

are shown in Fig. 6.14 and reveal that the resonant loss peak drops by a factor of about

8 when the ferrite cores are heated from the room temperature of 23ÆC to 100ÆC.

A measurement of the permeability of the ferrite has also been made on a single

Toshiba M4C21A ferrite core as a function of core temperature. To provide both a

good electrical circuit path and a uniform core temperature, the core was encased in an

aluminum test �xture before being placed on a hot plate. The top half of the test �xture

xLow loss does not imply low �00. Whenever ferrite is used, for example in the inductor insert, there

will be inevitably capacitance involved. Thus low loss actually implies low Rp.
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Figure 6.14: (color) An antenna at one end of the ferrite tuner sends out a sinusoidal
wave to be picked up by another antenna at the other end of the tuner, and the loss

is recorded. As the ferrite cores are heated from room temperature to 100ÆC, the
loss has reduced by almost 8 times.

consisted of a machined aluminum disk, 9 in in diameter and 1.25 in thick. The inner

section of the disk was machined out 0.005 in undersize to accommodate the ferrite core.

The disk was then heated and the core was slipped into the disk. Upon cooling, the

aluminum disk contracted and made a good thermal contact with one side and the outer

edge of the ferrite core. The aluminum �xture and core were then ipped over onto a at

aluminum plate so that only the inner edge of the core was exposed. A good electrical

connection between the aluminum disk and at plate was made using strips of adhesive

backed copper tape. The test �xture was placed on a hot plate and covered with two

�re bricks. The test �xture was then heated to 175ÆC and allowed to cool slowly.

The impedance measurement was made by placing the probe of an HP4193A vector

impedance meter directly across the inner edge of the ferrite core. Impedances were
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measured from 10 MHz to 110 MHz in 10 MHz steps from 150ÆC to 25ÆC. The temper-
ature of the core was monitored by a Fluke 80T-150U temperature probe inserted into

a small hole in the aluminum disk portion of the test �xture.

In order to make an electrical model of the entire core and test �xture structure, it

was necessary to obtain the equivalent parallel capacitance of the test set-up as depicted

in Fig. 6.12(b). The capacitor Cp was determined by adding additional �xed 100 pf

capacitors across the inner edge of the ferrite core and observing the change in the

resonant frequency of the structure from 41 to 28 MHz, a frequency range in which

the �0s of the ferrite is known to be relatively constant. In this manner, a capacitance

of Cp = 75 pf was chosen to represent the equivalent parallel capacitance of the test

circuit. There was also a series residual resistance of Rr = 0:55 
 in the probe. This

residual resistance introduces a large error at low frequencies (below � 10 Hz) when

the resistive part of the RLC circuit is small. From the measurements of the input

impedance, Rp and Lp were computed. From Eq. (6.36), the relative permeability, �0s
and �00s were inferred. These are plotted in Figs. 6.15 and 6.16. We see that from 23ÆC
to 150ÆC, �0s at low frequencies has almost been doubled, implying that the inductance

Lp at low frequencies has been doubled according to Eq. (6.36). The loss component �00s
also increases with temperature with its peak moves towards lower frequencies. This is

obvious in the two-element model of a ferrite, because Eq. (6.36) says that the peak of

�00s is proportional to Lp and independent of Rp.

There is always a capacitance accompanied the ferrite insert. For a pill-box enclosing

a single ferrite core, the capacitance measured was Cp = 75 pF, which is not too di�erent

from the computed value of 93 pF where a relative dielectric �r = 13 has been assumed

for the ferrite. The real part of the impedance of the ferrite insert per ferrite core, Re Zk
0 ,

is shown in Fig. 6.17. The resonant peaks are actually represented by the element Rp in

the RLC circuit. The measured values of Rp as a function of frequency and temperature

is shown in Fig. 6.18. We see that Rp depends very much on frequency and exhibits

resonant peaks, which diminishes and moves to lower frequencies as the temperature

increases. Thus the loss at high frequencies has been very much reduced by heating the

ferrite. For a coasting beam, the energy lost to the ferrite core is given by the area under

each Re Zk
0 curve. Although both Rp and Lp vary tremendously with temperature, we

�nd out that this loss is in fact temperature independent within 10% from 23ÆC to 150ÆC.
However, the impedance becomes broader and broader and the resonant frequency shifts

lower as the temperature increases.
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Figure 6.15: (color) Measured real part of the series magnetic permeability, �0s of
a single Toshiba M4C21A ferrite core up to 110 MHz at 25Æ, 50, 75, 100, 125, and
150ÆC. Measured points are denoted by circles.

Figure 6.16: (color) Measured imaginary part of the series magnetic permeability,

�00s of a single Toshiba M4C21A ferrite core up to 110 MHz at 25Æ, 50, 75, 100, 125,
and 150ÆC. Measured points are denoted by circles.
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Figure 6.17: (color) Measured real part of the impedance of a single Toshiba

M4C21A ferrite core inside an enclosing pill-box cavity up to 110 MHz at 25Æ, 50,
75, 100, 125, and 150ÆC. Measured points are denoted by circles.

Figure 6.18: (color) Measured resistance of the resistor Rp in the RL model of the

Toshiba M4C21A ferrite core or the RLC model of the inductor insert as functions

of frequency at 25Æ, 50, 75, 100, 125, and 150ÆC. Measured points are denoted by

circles.
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The threshold microwave instability, depicted in Fig. 6.13, is determined by the

impedance per unit PSR revolution harmonic, Z
k
0=n, whose real and imaginary parts

are shown, respectively, in Figs. 6.19 and 6.20. We now see that the resonant peak

of Re Zk
0=n decreases with increasing temperature (except at 25ÆC). This explains why

microwave instability can be alleviated by heating the ferrite cores.

The properties of the heated ferrite can be understand as follows. A piece of ferrite

consists of domains with magnetization. The total magnetization is the vector sum

of the magnetization of the domains. When the temperature increases, the domain

magnetizations are freer to move. They tend to line up resulting in higher magnetic

permeability �0s, which is what we has been observing. However, if the temperature

becomes too high, the spins of individual atoms or molecules become random and the

total magnetization will drop and reach zero at the Curie temperature.

6.3.4 Application at the PSR

Later in 1999 the solenoids of the ferrite inserts for PSR were removed, the outside of the

inserts were wound with heating tapes, and two modules were reinstalled in the PSR.

When the ferrite is heated to 130ÆC, the longitudinal microwave instability, seen in the in
Fig. 6.21, disappears. The pro�le of the 100 ns bunch in the presence of the heated ferrite

tuners, is no longer distorted and the bunch has not been lengthened. Further beam

studies with the heated ferrites carried out during the remainder of 1999 demonstrated

other bene�ts of the inductors without unmanageable operational impacts.

Two e�ects of the ferrite inserts are thought to contribute to improving the insta-

bility threshold possibly in two ways. One is the e�ect of a cleaner gap that will trap

fewer electrons during gap passage. This will improve the threshold of transverse e-p

coupled-centroid instability (Chapter-19). The other is the increased momentum spread

from the removal of the space charge depression of the bucket height. This will increase

Landau damping and improve the threshold of longitudinal microwave instability. The

latter increase in momentum spread is illustrated in Fig. 6.22 which shows plots from

ACCSIM simulations [14]. The simulations show the e�ect of longitudinal space charge

on the rf bucket height and momentum spread for a beam of 7:3 �C/pulse with 13 kV rf

voltage. The left plot shows the bunch and the bucket without longitudinal space charge

or the equivalent to full compensation by the inductive inserts. The right plot shows

the bunch and bucket subject to the longitudinal space charge force. For this case, the
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Figure 6.19: (color) Measured real part of the impedance per revolution harmonic

of a single Toshiba M4C21A ferrite core inside an enclosing pill-box cavity up to

110 MHz at 25Æ, 50, 75, 100, 125, and 150ÆC. Measured points are denoted by

circles.

Figure 6.20: (color) Measured imaginary part of the impedance per revolution

harmonic of a single Toshiba M4C21A ferrite core inside an enclosing pill-box cavity

up to 110 MHz at 25Æ, 50, 75, 100, 125, and 150ÆC. Measured points are denoted

by circles.
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Figure 6.21: With two ferrite tuners installed and heated to 130ÆC, the instability
ripples disappear from the pro�le of the 100 ns bunch.

space charge e�ect reduces the bucket height by �23%. In the absence of space charge,

the bucket height scales by the square root of the rf voltage and would imply a reduction

� 41% in rf voltage to reach the same bucket height as with space charge. This argu-

ment implies that with inductors a �41% reduction in rf voltage would reach the same

momentum spread as obtained in their absence. This is in reasonable agreement with

the observed e�ect of �35%. Thus, it appears that Landau damping explains much of

the e�ect of the ferrite inserts on the instability. With the increase in bucket height after

the compensation of the space charge force by the inductive inserts, the bucket is able

to hold the beam particles inside without leakage into the gap region. Thus, the ferrite

inserts improve the thresholds of both the longitudinal microwave instability as well as

the transverse two-stream coupled-centroid instability.

Comparable reductions in threshold curves have been obtained with other means

of Landau damping such as the use of a skew quadrupole (coupled Landau damping),

sextupoles and octupoles. It has also been observed that the e�ects of these (on the

instability threshold) add with that of the inductors. An additional sextupole was in-

stalled in the upgrade. It is surprising that this sextupole has an important bearing
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Figure 6.22: Simulation of a PSR bunch with an intensity of 7:3 �C at the buncher

voltage of 13 kV using the code ACCSIM. The left plot is the result without space

charge while the right plot is the result with space charge included. Notice that

in the presence of space charge the bucket height is reduced by 24%, implying a

cancellation of the rf voltage by 42%. The top curve on the right shows the space

charge voltage per turn (proportional to the spatial derivative of the proton line

density).

on the beam stability. Turning on this sextupole current to +20 A and optimizing the

former four sextupoles and two octupoles in the ring can help to improve the threshold

curve by � 25% as is shown in Figure 6.23. It is understandable that the sextupoles

and octupoles introduce tune spread which can provide Landau damping of the vertical

coupled e-p instability once protons leak into the bunch gap and prevent the electrons

from clearing. However, why just one sextupole has this much e�ect is not clear at all.

In late 1999 the combined e�ect of heated ferrites and a skew quad enabled us to

accumulate and store at the PSR a record 9:7 �C/pulse, which is all that the linac could

deliver. For this demonstration, the accumulation time was 1225 �s, the maximum

obtainable at 1 Hz from the linac. The ferrite inserts were heated to 190ÆC, which over

compensates longitudinal space charge by �50%. The rf buncher was at the maximum

of 18 kV. In addition, the bunch width was stretched out to 305 ns, something never
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Figure 6.23: (color) After the upgrade, the PSR operating without the ferrite

insert had a lower bunch intensity versus buncher voltage, depicted in dots, than

the historical, depicted in dashes.

been accomplished before without reducing the threshold intensity. Beam losses were

high (� 5%), which would be prohibitive at 20 Hz. There was, no doubt, signi�cant

emittance growth that could be attributed to transverse space charge e�ects from the

very high peak beam current of 82 A observed in this demonstration.

Engineered versions of the heated ferrites were installed in the fall of 2000 and have

been used in production running ever since. A bunch length of 290 ns instead of the 250

has reduced the accumulation time accordingly thereby saving �$15k per month in linac

power costs. At the present, the PSR with two heated-ferrite modules can operate stably

at an intensity of 8 �C/pulse for low repetition rates (for beam studies and single pulse

users). Thus, the peak intensity goal of the upgrade has been surpassed. The remaining

challenge is to reduce beam losses so that routine operation at 20 Hz is possible with

acceptable activation of the ring.
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6.4 Exercises

6.1. The dispersion relation of Eq. (6.19) can be rewritten in a simpler form. let us

measure revolution angular frequency in terms of 2S, the FWHM spread, which is

related to the FWHM energy spread by

2S � ! � !0
��
FWHM

= ��!0
�2

�E

E0

����
FWHM

: (6.40)

We can then introduce a dimensionless reduced angular frequency x such that

n! � n!0 = nxS and 
� n!0 = nx1S ; (6.41)

where we have used the fact the the collective angular frequency 
 in Eq. (6.15)

is close to n!0. The frequency distribution function g0(!) is now transformed to a

distribution f(x) which is normalized to 1 when integrated over x. We have

dg0(!)

d!
d! =

d f(x)

dx

dx

d!
dx =

1

S

d f(x)

dx
dx : (6.42)

(a) Show that the dispersion relation (6.19) becomes

1 = � i2 sgn(�)
�

(U 0 + iV 0)
Z

f 0(x)
x1 � x

dx ; (6.43)

where U 0 and V 0 are de�ned in Eq. (6.21).

(b) When the beam current is just above threshold, the reduced collective angular

frequency is written as x1 = x1R + i� where x1R is real and � is an in�nitesimal

positive number. Show that the stability curve can be obtained from

1 = � i2 sgn(�)
�

(U 0 + iV 0)
�
}

Z
f 0(x)
x1R � x

dx� i�f 0(x1R)
�
: (6.44)

by varying x1R, where } denotes the principal value of the integral.

(c) show that the negative V 0-intersect or the lowest point of the bell-shaped

stability curve V 0
in is given by

1 = �2 sgn(�)V 0
in

�
}

Z
f 0(x)
x

dx : (6.45)

In fact, the form factor in the Keil-Schnell criterion is given by F = jV 0
inj.

(d) The form factor F 's in the Keil Schnell criterion for various frequency distri-

bution functions are listed in Table 6.1. Verify the results.
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Table 6.1: Form factors in the Keil-Schnell criterion for various distributions. For

the �rst four, the distributions reside only inside the region j�!j � d�!. When

normalized to the HWHM, the domain becomes jxj � a.

Frequency Distribution Form Factor

g0(!) [�!=!�!0] f(x) F

3

4d�!
�
1��!2d�!2

�
3

4a

�
1�x

2

a2

�
a2 = 2

�a2

6
= 1:0472

8

3�d�!
�
1��!2d�!2

�3=2
8

3�a

�
1�x

2

a2

�3=2

a2 =
1

1�2�2=3
�a2

8
= 1:0612

15

16d�!
�
1��!2d�!2

�2
15

16a

�
1�x

2

a2

�2

a2 =
1

1�2�1=2
�a2

10
= 1:0726

315

256d�!
�
1��!2d�!2

�4
315

256a

�
1�x

2

a2

�4

a2 =
1

1�2�1=4
�a2

18
= 1:0970

1p
2��

exp

�
��!2

2�2

�
1p
2�a

exp

�
� x2

2a2

�
a2 =

1

2 ln 2

�a2

2
= 1:1331

6.2. Using Eq. (6.44), plot the bell-shaped stability contours for the distributions listed

in Table 6.1 as illustrated in Fig. 6.4.

6.3. Using Eq. (6.43), show that the constant-growth contours for the Gaussian distri-

bution are given by

1 =
i sgn(�)4 ln 2

�
(U 0 + iV 0) [1 + i

p
� ln 2 x1 w(

p
ln 2x1)] ; (6.46)

where use has been made of the integral representation of the complex error func-

tion:

w(z) =
i

�

Z 1

�1

e�t
2

z � t
dt for Imz > 0 : (6.47)

Plot the contours in Fig. 6.3.
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